Pressure Distribution Guidance

MassDEP/MHOA Seminar DATE

SPEAKER

Department of Environmental Protection

Pressure Distribution Guidance

- Updated Guidance published in May 2002
 - Originally issued in 1995
 - Developed by committee of health agents, private consultants, equipment suppliers and MassDEP staff
- Reflects experience gained since 1995

Pressure Distribution

- Promotes uniform distribution throughout the SAS
- Uniform distribution promotes proper treatment
- Effectiveness depends upon:
 - Proper design
 - Proper construction
 - Proper maintenance

Regulatory Considerations 310 CMR 15.254

- Example 1:
 - A single system serving a single facility is designed for a flow of 2,001 gpd.
 - Is pressure distribution required?
 - JYES!

Regulatory Considerations 310 CMR 15.254

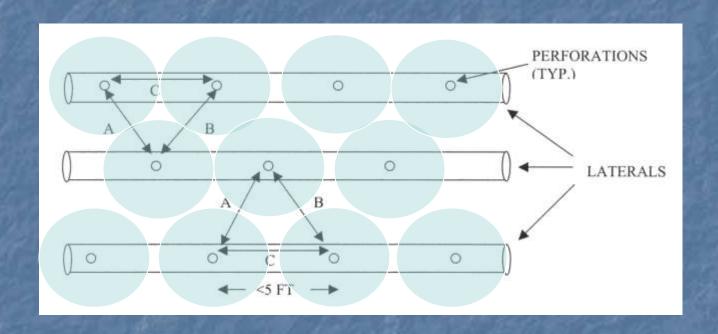
Example 2:

- A single facility with a series of seven systems each with a design flow of 330 gpd.
- Is pressure distribution required?
- YES!
- WHY?
 - The aggregate flow from the facility is greater than 2,000 gpd (total flow = 2,310 gpd).

Exception to the Regulatory Considerations

Patented Sand Filter Systems*

- Standard Conditions for Alternative Soil Absorption Systems with General Use Certification and/or Approved for Remedial Use, February 3,2016
- II. Design and Installation Requirements, Paragraph 10, states Specific Conditions for Treatment with Disposal Alt.
 SAS Technologies
- * If the applicant requests LUA for percolation testing (sieve analysis), use of a patented sand filter is not permitted if the soils are compacted or are Class III or Class IV see MassDEP's May 3, 2006 Title 5 Alternative to Percolation Testing Guidance for System Upgrades

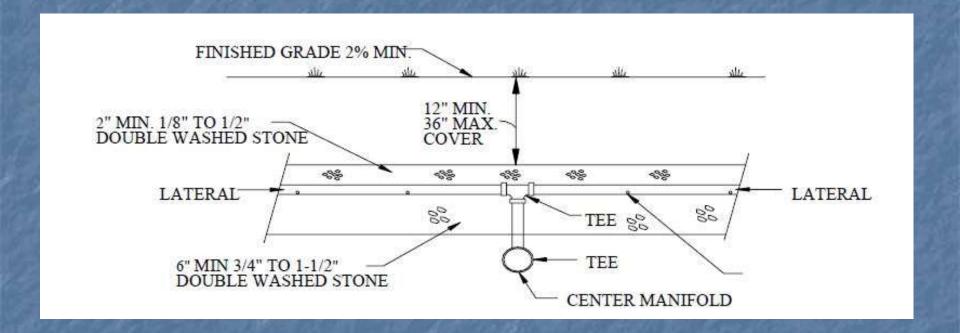

What Happened in 2002?

2002	1995
1/8" minimum perforation	1/4" minimum perforations
Perforations orientated up or down with shield	Perforations at 5 and 7 o'clock – no shields
Lateral cleanouts (recommended)	Lateral cleanouts not mentioned
Greater number of diagrams and design samples	Minimum number of diagrams and design samples

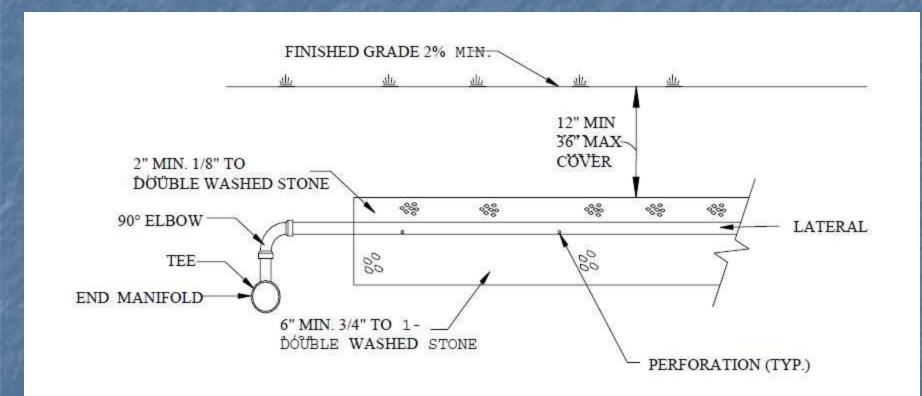
Design Considerations

- In-line pressure:
 - 2.5 feet of head at distal lateral
 - Maximum 10% flow variation in system
- Perforations:
 - 1/8" minimum
 - Uniformly spaced as many as practical
 - Stagger in bed formation

Staggered Perforations


Manifolds

Central or end configuration


Minimize volume

Install below distribution laterals

Center Manifold

Side Manifold

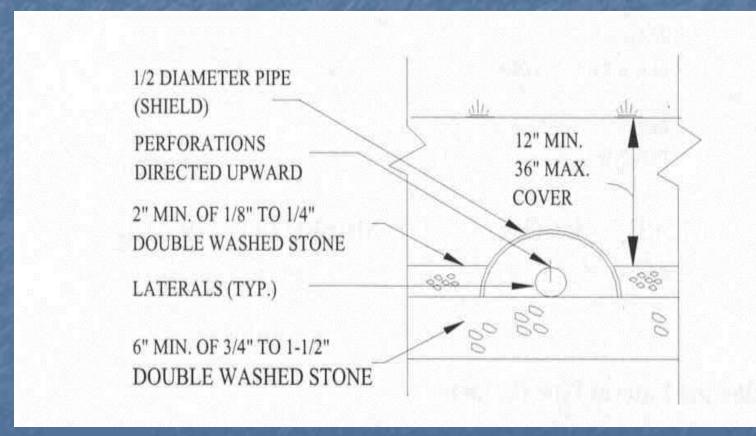
DESIGN PROCEDURES

Step 1: Lay Out a Network

- Design is based on site condition, flow rate and soil conditions
- Trench or bed configuration
- Central or end manifold central minimizes lateral length
- Provide drainage of laterals

Step 2: Select Perforation Size and Spacing

- 1/8" to 5/8" perforations
 - 1. Smaller allow more uniform distribution
 - Larger allow greater spacing and longer laterals
 - but can cause ponding
- Air must be vented
- Laterals must drain to SAS or pump chamber
- Spacing shall not exceed 5 feet


Step 2 — Continued perforation orientation

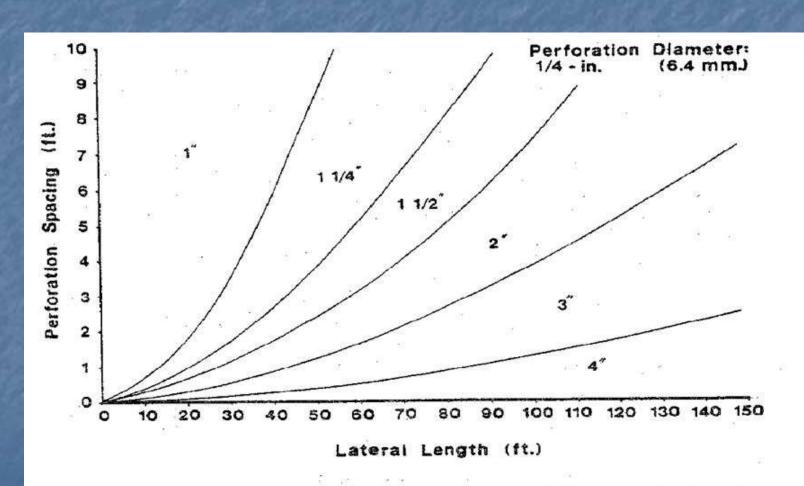
- Between 10 and 2 o'clock or 5 and 7 o'clock
- At 12 o'clock or 6 o'clock
- Shields are required for between 10 and 2 or at 6 to reduce scouring
- Shields can be half pipe, manufactured orifice shields, chambers, etc.

Shields

Detail of Pressure Distribution with Shields

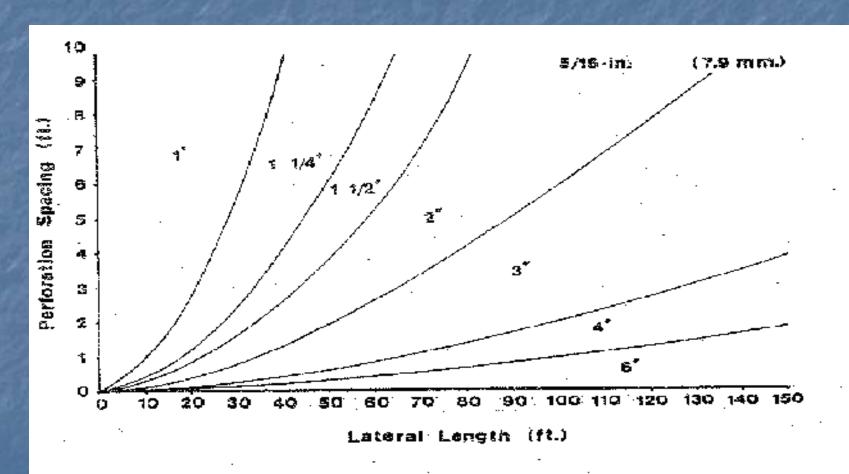
Step 3: Determine lateral pipe diameter

- Figures 8A 8G in Appendix B of Guidance R. Otis based on Hazen-Williams Equation
 - Based on C = 150
 - Perforation size and number
 - Spacing
 - Lateral length
- Accounts for maximum 10% head loss


Hazen-Williams Equation

 $h = 0.2083 (100 / c)^{1.852} q^{1.852} / d_h^{4.8655}$

where


- h = friction head loss in feet of water per 100 feet of pipe (ft_{H2O}/100 ft pipe)
- c = Hazen-Williams roughness constant
- q = volume flow (gal/min)
- d_h = inside hydraulic diameter (inches)

Design Procedure

Minimum Lateral Diameter for Plastic Pipe (C_h = 150) Versus Perforation Spacing and Lateral Length for 1/4 in. Diameter Perforations (Otis, 1981)

Design Procedure

Minimum Lateral Diameter for Plastic Pipe ($C_h=150$) Versus Perforation Spacing and Lateral Length for 5/16 in. Diameter Perforations (Otis, 1981)

Step 4: Calculate the Lateral Discharge Rate

 $q = 11.79 d^2 h_d^{0.5}$

q: perforation discharge rate (gpm)

d: perforation diameter (inches)

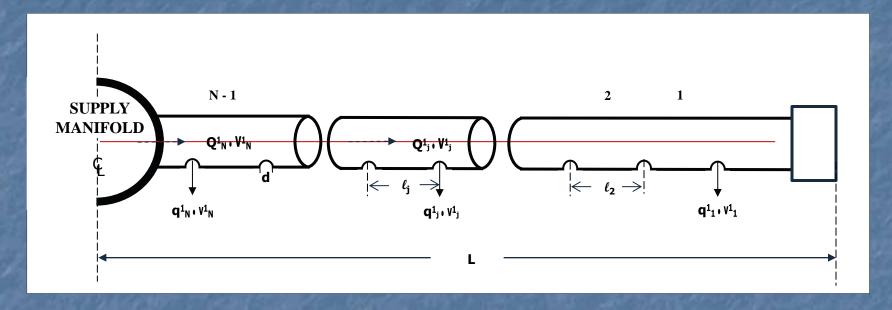
h_d: in-line distal pressure (feet)

Use Table 1 in Guidance

Minimum distal head pressure = 2.5 feet

Total discharge: q x N

N: total perforations in lateral


<u>Table 1</u>

Perforation Discharge Rates in Gallons per Minute vs. Perforation Diameter and In-Line Pressure (adapted from Otis, 1981)

In-Line Pressure (ft)	Perforation Diameter (inches)							
	1/8	1/4	5/16	3/8	7/16	1/2	9/16	5/8
	4			gpm				>
1.0	0.18	0.74	1.15	1.66	2.26	2.95	3.73	4.60
1.5	0.22	0.90	1.41	2.03	2.76	3.61	4.57	5.64
2.0	0.26	1.04	1.63	2.34	3.19	4.17	5.27	6.51
2.5	0.29	1.17	1.82	2.62	3.57	4.66	5.90	7.28
3.0	0.32	1.28	1.99	2.87	3.91	5.10	6.46	7.97
3.5	0.34	1.38	2.15	3.10	4.22	5.51	6.98	8.61
4.0	0.37	1.47	2.30	3.31	4.51	5.89	7.46	9.21
4.5	0.39	1.56	2.44	3.52	4.79	6.25	7.91	9.77
5.0	0.41	1.65	2.57	3.71	5.04	6.59	8.34	10.29

NOTE: Figures for 1/8 inch perforation diameters compiled by P. Spath, B. Dudley, (2001)

Definition Sketch

Where:

N: the number of perforations

Q_i: Total flow through the lateral segment

 V_{j}^{1} : Velocity though the lateral segment

q¹_i: Flow though a particular orifice specified by the subscript

v_i: velocity through a particular orifice specified by the subscript

 ℓ_{j} : the length of an segment between orifices

L: the total length of the lateral

Step 5: Calculate Manifold Size

- In larger systems telescoping manifolds can reduce friction loss
- Determine friction factors:

$$F_i = (9.8 \times 10^{-4})Q_i^{1.85}$$

- F_i: friction factor for manifold segments
- 0.00098: coefficient of friction for plastic pipe
- Q_i: flow in manifold segment (gpm)

Step 5: Calculate Manifold Size continued

- Take the Fi values in each lateral segment
- Calculate pipe segment diameter

$$D_m = \left[\frac{\sum_{i=l}^M L_i F_i}{f h_d}\right]^{0.21}$$

Manifold Diameter Calculation

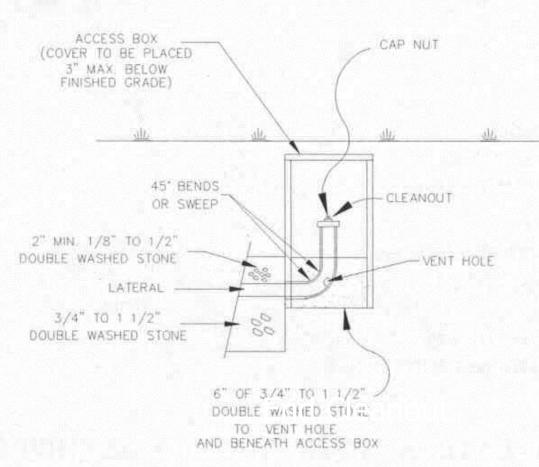
$$D_{\rm m} = \begin{bmatrix} \sum_{i=1}^{M} L_i F_i \\ \frac{i=1}{f h_d} \end{bmatrix}$$

■ M = no. of segments

- L_i = length of ith segment (lat'l spacing)
- f= fraction of total head loss (0.1) so limited to 10%
- h_d=distal head (ft)

Steps 6 and 7

- Step 6: Determine dose volume
 - Minimum 5 to 10 times volume of laterals
 - Do not include manifold vol. if below laterals
 - Necessary to properly charge the system
- Step 7: Calculate min. pump discharge
 - Add all perforation discharge rates


Step 8: Calculate Total Friction Losses

Force main:

```
Friction loss = L_d(3.55Q_m/C_hD_d^{2.63})^{1.85}
```

- Ld: length of force main to network inlet (feet)
- 3.55: dimensionless coefficient for energy loss
- Q_m: discharge rate (gpm)
- C_h: 150 (Hazen-Williams)
- D_d: force main diameter (inches)
- Add network losses (1.31 h_d)
- Add fixture losses (tees, bends, valves etc.)

Design Procedure

DISTAL END PERFORATION TO BE PLACED NEAR THE CROWN OF THE PIPE IN THE 45° BEND OR SWEEP AT THE END OF EACH LATERAL

Step 9: Select the Pump Unit

- Follow standard engineering practice
- Sized on total dynamic head (TDH)
 - Static losses
 - Friction losses
 - Network losses
- Use appropriate pump curves

Step 10: Size the pump chamber

- Discharge design dose
- Provide emergency storage capacity above high water alarm
- Include pump on/pump off and alarm
 - Pump on/off for single pump
 - Lead/lag on/off for dual pumps
 - Alarm on separate power circuit from pump(s)
- Quick disconnect
- Siphon break if pump downhill

Design Alternatives

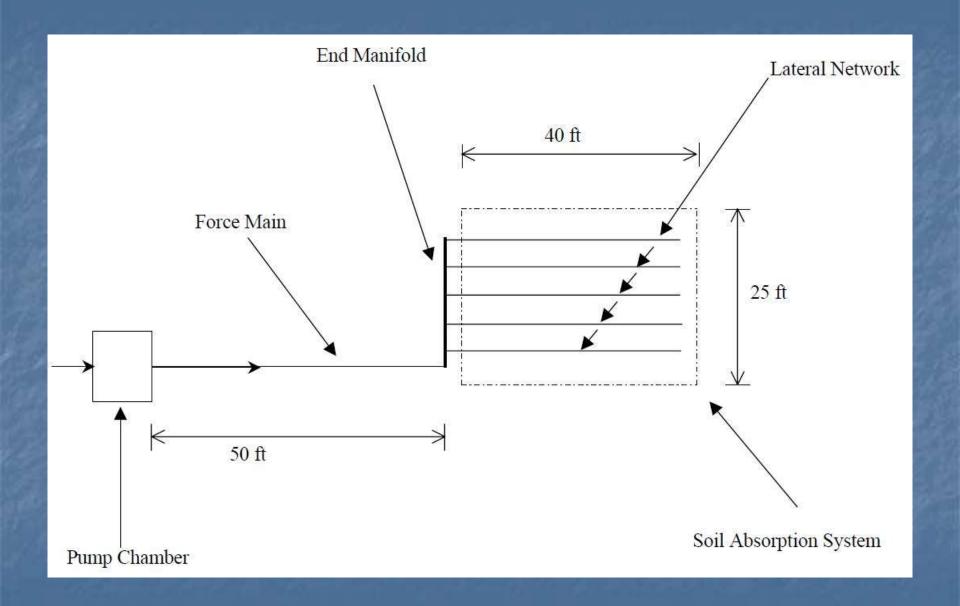
- Divide SAS into zones must dose all zones before returning to the first
- Timed dosing is an option
 - More applicable to larger flows
 - Must have certain overrides to prevent under or over dosing

Construction Considerations

- Debur all perforations
- Use effluent tees in the septic tank to help prevent solids carry over (not necessary if treatment unit precedes discharge)
- Lay out laterals in proper orientation and position
- Provide sweeps for cleanout
- Clear water test prior to backfilling

REGIONAL CONTACT

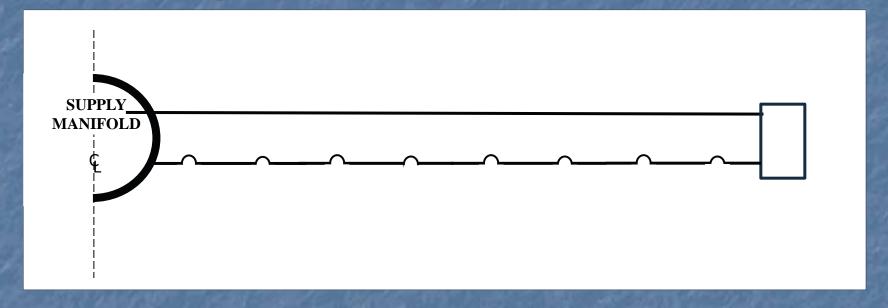
NAME
Telephone number
Email address



Any questions before we start some examples...

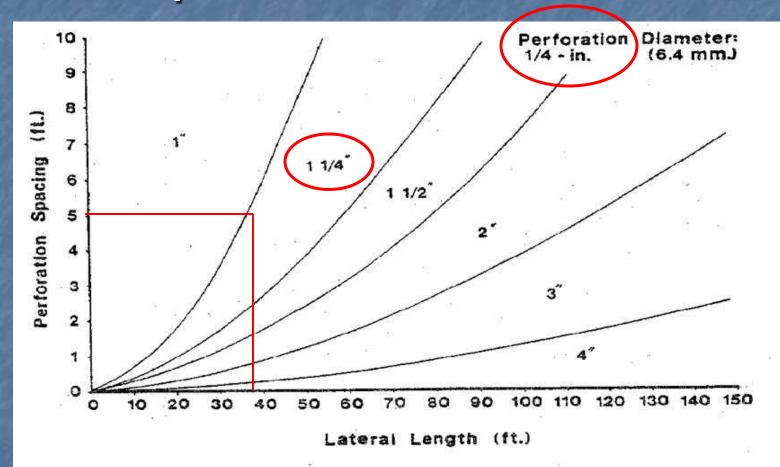
Design Examples

Scenario 1


- Single family home
- 6 bedrooms (no garbage grinder)
- **660** gpd
- Class 1 soils with 8 mpi perc
- Resulting LTAR is 0.66 gpd/sf

Steps 1 and 2

- Lay out the network
 - End manifold
 - 5 laterals
 - Pump chamber is 50 feet from the manifold
 - SAS is 40 ft long by 25 feet wide
- Select perforations size and spacing
 - 1/4 inch diameter perforations
 - Maximum spacing of 5 feet


Step 3: Lateral Diameter

Lateral length:

 1^{st} and last perforations in the lateral are located ½ the distance of 5 feet. Therefore the distance from the first orifice to last orifice is reduced by ½ the spacing: 40 ft - (0.5 * 5 ft) = 37.5 ft This becomes the lateral length you use.

Step 3: Lateral Diameter

Minimum Lateral Diameter for Plastic Pipe (C_h = 150) Versus Perforation Spacing and Lateral Length for 1/4 in. Diameter Perforations (Otis, 1981)

Step 4: Calculate Lateral Discharge Rate

Using Table 1 with a minimum in-line pressure of 2.5 ft to determine discharge from a 1/4 inch perforation

<u>Table 1</u>

Perforation Discharge Rates in Gallons per Minute vs. Perforation Diameter and In-Line Pressure (adapted from Otis, 1981)

	Perforation Diameter (inches)										
In-Line Pressure (ft)	1/8	1/4	5/16	3/8	7/16	1/2	9/16	5/8			
3,3,5,1	4			gpm				>			
1.0	0.18	0.74	1.15	1.66	2.26	2.95	3.73	4.60			
1.5	0.22	0.90	1.41	2.03	2.76	3.61	4.57	5.64			
2.0	0.26	1.04	1.63	2.34	3.19	4.17	5.27	6.51			
2.5	0.29	1.17	1.82	2.62	3.57	4.66	5.90	7.28			
3.0	0.32	1.28	1.99	2.87	3.91	5.10	6.46	7.97			
3.5	0.34	1.38	2.15	3.10	4.22	5.51	6.98	8.61			
4.0	0.37	1.47	2.30	3.31	4.51	5.89	7.46	9.21			
4.5	0.39	1.56	2.44	3.52	4.79	6.25	7.91	9.77			
5.0	0.41	1.65	2.57	3.71	5.04	6.59	8.34	10.29			

NOTE: Figures for 1/8 inch perforation diameters compiled by P. Spath, B. Dudley, (2001)

Step 5: Calculate the Manifold Size

- Uniform diameter (simplify construction)
- Manifold Length = 4 * 5 ft = 20 ft
- Use Table 2 for an end manifold with a lateral discharge rate of 9.36 gpm and 5 ft lateral spacing
- The best fit appears to be either:
 - 20-foot long 2 inch manifold; or
 - 44-foot long 3 inch manifold

Lateral Discharge Rate

- 1.17 gpm discharge per orifice
- Total length of lateral is 40 feet
- Orifice spacing is 5 feet with the first orifice 2.5 feet from the lateral start and the last orifice 2.5 feet from the end
- No. of orifices = 40/5 = 8
- Discharge rate = 8 orifices * 1.17 gpm/orifice = 9.4 gpm

Table 2

Maximum Manifold Length (ft) For Various Manifold Diameters Given the Lateral Discharge Rate and Lateral Spacing (from: Otis, 1981)

Lateral Discharge Rate	Manifold Diameter = 11/4"	Manifold Diameter = 1 ½"	Manifold Diameter = 2"	Manifold Diameter = 3"	Manifold Diameter = 4"	Manifold Diameter = 5"
End Manifold Center Manifold	Lateral Spacing (ft)	Lateral Spacing (ft)	Lateral Spacing (ft)	Lateral Spacing (ft)	Lateral Spacing (ft)	Lateral Spacing (ft)
	2 4 6 8 10	2 4 6 8 10	2 4 6 8 10	2 4 6 8 10	2 4 6 8 10	2 4 6 8 10
10 / 5	4 8 6 8 10	10 8 12 16 20	12 16 24 24 30	26 40 48 56 70	42 64 84 96 110	84 134 174 200 240
20 / 10	4 4 6	4 4 6 8 10	6 8 12 16 20	16 24 30 32 40	26 40 54 64 70	54 84 106 128 150
30 / 15	2	2 4 6	4 8 6 8 10	12 16 24 24 30	20 26 36 48 60	42 64 84 96 110
40 / 20			4 4 6 8 10	10 12 18 16 20	16 24 30 32 40	34 52 66 80 90
50 / 25			2 4 6 8	8 12 12 16 20	14 20 24 32 40	30 44 60 72 80

Step 6: Determine Dose Volume

- Crown of manifold is below lateral invert
- Manifold and delivery line drain back.
- Minimum dose volume only in laterals
- 5-10 times the total lateral volume

Dose Volume Continued (2)

```
Total length of laterals: 5 pipes*40 ft = 200 ft Area of 1-1/4 in (0.1042 \text{ ft}) laterals: \pi r^2 = \pi^*(0.0521)^2 = 0.0085 \text{ sf}
Total pipe volume 0.0085 \text{ sf} * 200 \text{ ft} = 1.7 \text{ cf} 1.7 \text{ cf} * 7.48 \text{ gal/cf} = 12.7 \text{ gallons}
```

Dose Volume Continued (3)

```
Min dose volume of 5-10 times pipe volume
  12.7 \text{ gal } (5 \text{ to } 10) = 64 \text{ to } 127 \text{ gal}
Dose frequency: 12 doses per day (dpd)
  660 \text{ gpd/}6 \text{ dpd} = 55 \text{ gal per dose}
Manifold and delivery line drain back must be
accounted for. Both are 2-in pipes:
  (20+70) ft * \pi * (0.0833)^2 ft<sup>2</sup> = 1.52 ft<sup>3</sup>
   1.52 \text{ ft}^3 * 7.48 \text{ gal/ft}^3 = 11.4 \text{ gal}
```

Dose Volume Continued (4)

Pumping volume = dose volume + drain back volume

= 55 gal + 11.4 gal = 66.4 gal

Step 7: Calculate the Minimum Discharge Rate

Minimum discharge rate = 9.4 gpm/lateral * 5 laterals = 47 gpm

Step 8: Friction Loss Calculation

Friction loss = $L_d(3.55Q_m/C_hD_d^{2.63})^{1.85}$

- L_d: 50 ft (length of force main)
- 3.55: dimensionless coefficient for energy loss
- **Q**_m: 47 (gpm)
- C_h: 150 (Hazen-Williams)
- D_d: 2 inches

Friction loss =

 $(50)((3.55*47)/(150*2^{2.63}))^{1.85} = 2.08 \text{ ft}$

Network loss = $1.31h_d = 1.31*2.5 \text{ ft} = 3.28 \text{ ft}$

Total losses (not including pump chamber or fittings) = 5.36 ft (round up and use 6 ft)

Step 9: Select the Pump Unit

Total Head = Static Head + Friction Losses

If the pump off elevation in the pump chamber is 4 feet below the lateral invert, then the total head is

4 ft + 6 ft = 10 ft

Use head/discharge curves and find a pump capable of pumping 47 gpd against 10 feet of head

Step 10: Size the Pump Chamber

Only one pump will be used (< 2,000 gpd)

Reserve volume = one day's average daily flow

Pumping Volume 66.4

+ Daily Design Flow 660

726.4 gallons